Rutgers University: Algebra Written Qualifying Exam

 August 2016: Problem 1 SolutionExercise. Let G be an abelian group and for each positive integer n, define

$$
G[n]=\{g \in G \mid n g=0\} .
$$

(a) Show that if m and n are positive integers and m divides n, then $G[m] \subseteq G[n]$, and $G[n] / G[m]$ is isomorphic to a subgroup of $G[n / m]$.

Solution.

Since $m \mid n, n=d m$ for some $d \in \mathbb{N}$.
If $g \in G[m]$, then $m g=0$

$$
\begin{aligned}
& \Longrightarrow n g=(d m) g=d(m g)=d \cdot 0=0 \\
& \Longrightarrow g \in G[n]
\end{aligned}
$$

Thus $G[m] \subseteq G[n]$.
Find an isomorphism between $G[n] / G[m]$ and some subgroup of $G[n / m]$.
First Isomorphism Theorem: If $\phi: G \rightarrow H$ is a homomorphism, then

$$
G / \operatorname{ker}(\phi) \cong \phi(G)
$$

Let $\phi: G[n] \rightarrow G$ be defined by $\phi(g)=m g$.

$$
\begin{aligned}
\phi(g+h) & =m(g+h) \\
& =m g+m h \\
& =\phi(g)+\phi(h)
\end{aligned}
$$

$\Longrightarrow \phi$ is a homomorphism

$$
\begin{array}{ll}
\operatorname{ker}(\phi): & \phi(g)=m g=0 \Longleftrightarrow g \in G[n] \cap G[m]=G[m] \\
\operatorname{Im}(\phi): & d \phi(g)=d m g=n g=0 \text { for all } g \in G[n] \Longrightarrow \phi(G) \text { is a subgroup of } G[d]
\end{array}
$$

By the first isomoprhism theorem,

$$
G[n] / G[m] \cong \operatorname{Im}(\phi), \text { a subgroup of } G[n / m]
$$

(b) Give an example in which m divides n but $G[n] / G[m] \not \equiv G[n / m]$. Prove your assertion.

Solution.

Let $G=\mathbb{Z}_{12}$.

$$
\begin{aligned}
G[3]=\{0,4,8\} & \text { and } \begin{aligned}
& G[9]=\{0,4,8\} \\
& G[9] / G[3]=\{\{0,4,8\}=G[3]+0=G[3]+4=G[3]+8\} \\
& \Longrightarrow|G[9] / G[3]|=1 \\
& \text { But }|G[9 / 3]|=|G[3]|=3 \\
& \text { Thus, } G[9] / G[3] \neq G[9 / 3]
\end{aligned}
\end{aligned}
$$

