Rutgers University: Algebra Written Qualifying Exam August 2016: Problem 1 Solution

Exercise. Let G be an abelian group and for each positive integer n, define

$$G[n] = \{g \in G | ng = 0\}.$$

(a) Show that if m and n are positive integers and m divides n, then $G[m] \subseteq G[n]$, and G[n]/G[m] is isomorphic to a subgroup of G[n/m].

Solution. Since $m \mid n, n = dm$ for some $d \in \mathbb{N}$. If $q \in G[m]$, then mq = 0 $\implies ng = (dm)g = d(mg) = d \cdot 0 = 0$ $\implies q \in G[n]$ Thus $G[m] \subset G[n]$. Find an isomorphism between G[n]/G[m] and some subgroup of G[n/m]. **First Isomorphism Theorem:** If $\phi : G \to H$ is a homomorphism, then $G/\ker(\phi) \cong \phi(G)$ Let $\phi: G[n] \to G$ be defined by $\phi(g) = mg$. $\phi(q+h) = m(q+h)$ = mq + mh $=\phi(g)+\phi(h)$ $\implies \phi$ is a homomorphism $\phi(g) = mg = 0 \iff g \in G[n] \cap G[m] = G[m]$ $\operatorname{ker}(\phi)$: $Im(\phi): \quad d\phi(g) = dmg = ng = 0 \text{ for all } g \in G[n] \implies \phi(G) \text{ is a subgroup of } G[d]$ By the first isomorphism theorem, $G[n]/G[m] \cong Im(\phi)$, a subgroup of G[n/m]

(b) Give an example in which m divides n but $G[n]/G[m] \neq G[n/m]$. Prove your assertion.

Solution. Let $G = \mathbb{Z}_{12}$. $G[3] = \{0, 4, 8\}$ and $G[9] = \{0, 4, 8\}$ $G[9]/G[3] = \{\{0, 4, 8\} = G[3] + 0 = G[3] + 4 = G[3] + 8\}$ $\implies |G[9]/G[3]| = 1$ But |G[9/3]| = |G[3]| = 3Thus, $G[9]/G[3] \not\cong G[9/3]$